The Taube (“dove” in German) was the first military airplane mass-produced in Germany. Designed in 1909 by Ignaz “Igo” Etrich of Austria-Hungary and first flown in 1910, wires supported and controlled warping of the wing tips, and the horizontal stabilizer’s trailing edge could also be warped up and down.

On November 1, 1911, the world’s first aerial bomb was dropped from a Taube by Italian aviator Giulio Gavotti. German pilots flying a Taube spotted the advancing Imperial Russian Army at the start of the Battle of Tannenberg between Germany and Russia.

We are pleased to acknowledge and thank Robert A. Lippman for encouraging us to develop and introduce this semi-scale model of a Rumpler factory-produced Taube. This is the first and only radio-controlled ARF model with functional wing and tail warping. Built to about 1/9th scale, it has pre-installed control cables and a pilot’s control stick that moves the elevator. It also includes scale-looking articulated landing gear and a spring-loaded tail skid. It is constructed mainly of balsa, plywood and composite materials. Assembly is surprisingly easy for such a full-featured model. A dummy engine, vintage-style spoked wheels and pilot figures are available as optional upgrades.

We invite you to enjoy the pride of ownership and the joy of flying this beautiful ARF semi-scale model of the famous Rumpler Taube.

TABLE OF CONTENTS:

I. Important safety precautions ... 2
II. Preflight checks .. 4
III. Warranty, liability waiver & return policy 4
IV. Specifications ... 5
V. Parts List .. 5
VI. Special features .. 5
VII. Assembly instructions ... 6
VIII. Setup & adjustments .. 16
I. SAFETY PRECAUTIONS & ASSEMBLY TIPS
(IMPORTANT — READ THIS SECTION BEFORE YOU BEGIN ASSEMBLY)

1. This product should not be considered a toy, but rather a sophisticated, working model that functions much like a full-scale airplane. Because of its performance capabilities, this product, if not assembled and operated correctly, could cause injury to you or spectators and damage to property. Maxford USA provides you with a high-quality, thoroughly tested model airplane kit with assembly instructions. However, the quality and capabilities of your finished model airplane depend on how you assemble it, and your safety depends on how you use and fly it. Any testing or flying of this model airplane is done entirely at your own risk.

2. Assemble this model airplane according to these instructions. Do not alter or modify the model as doing so may result in an unsafe or unworkable model. If you have any question or concern about these instructions, before you proceed with assembly of this product, contact your dealer or speak to a Maxford USA customer service representative at 562-529-3988 (Monday through Friday, except national holidays, 9 AM to 5 PM Pacific Time).

3. Minor production details may vary.

4. While this kit has been flight-tested to meet or exceed our rigid performance and reliability standards, if you elect to perform any extremely high-stress flying, such as racing or aerobatics, or if you install a larger power system than specified, you (the buyer or user of this product) are solely responsible for taking any necessary steps to reinforce the high-stress points and/or substitute hardware that is more suitable for such increased stresses.

5. Throughout the lifetime of this model, use only the Maxford USA-recommended power system with a fully-charged battery and a new or well-maintained radio-control system.

6. It is your responsibility to install and connect the control and power components in such a way that the model passes all applicable safety/range tests and that the power system and controls operate correctly.

7. Recheck the operation of this model airplane before every flight to ensure that all equipment is still operating correctly and that the model remains structurally sound and check all electrical, control and structural connections; do not fly without replacing any that you find damaged or worn.

8. Before you begin assembly of this model airplane, read all instructions and test-fit each part to ensure you fully understand the instructions and that no parts are missing, damaged or unsatisfactory.

9. Temperature and/or humidity differences between the factory, our warehouse and your home, workshop or flying field may dictate the need for slight adjustments to the flying surfaces or mounting surfaces to ensure proper alignment. See item 28 on page 3 for additional instructions. If you need more guidance on how to perform such adjustments, call Maxford USA for assistance.

10. To help ensure the security of your servo connections, we recommend using optional Maxford USA servo-extension safety clips as pictured at the right. (For information about safety clips see http://www.maxfordusa.com/servoextensionsafetyclip.aspx.)

11. Assemble any EZ-Link connectors as pictured at the right. When you apply threadlock compound, be careful to NOT glue the EZ-Link connector to the control arm or mounting tab. Also be careful to not let the pushrod bind against any nearby surfaces.

12. Use your radio or a servo tester to center your servos before installation. (You may learn more about servo testers at http://www.maxfordusa.com/servo.aspx.)

13. As pictured at the right, this model allows customers some choice in servo selection:
 a. Test-fit your servos and the supplied wood mounting pedestals to the hatch covers.
 b. Use epoxy to attach the mounting pedestals to the hatch covers. Use the hardware provided with your servos to mount the servos to their mounting pedestals.
14. String may be supplied to pull your servo’s lead and servo extension through the wing to your receiver; however, you may find it easier to use masking tape to temporarily attach the connector to the end of a length of coat-hanger wire, then use the wire to pull the lead and connector through the wing as pictured at the right. Guide the servo into the servo bay, cover the servo bay with the servo-hatch and secure the hatch with screws or glue.

15. After you determine each wood-screw’s location, drill a guide hole, drive the screw into the hole, then remove the screw and apply thin CA adhesive to harden and strengthen the wood.

16. To use a crimp tube for attaching a cable (such as to a threaded rod as pictured below):
 a. Slide the crimp-tube onto the end of the cable.
 b. Guide the end of the cable through the opening in the threaded rod.
 c. Bring the end of the cable back into and all the way through the crimp tube.
 d. Loop the end of the cable back into the crimp tube, adjust the looped end of the cable, then use pliers to firmly squeeze along the length of the crimp tube to securely crimp the tube onto the cable.
 (NOTE: For your safety, do not leave any strands of wire poking out from the end of any crimp tube. Exposed small steel strands can be sharp enough to cut or abrade skin!)

17. After a clevis is adjusted on its threaded rod, anchor the threaded rod inside the clevis by snugging a lock nut (if supplied) against the clevis and/or permanently secure the clevis to the rod with epoxy.

18. Any clevises included with this model may be made of plastic or metal. A conservative modeler may hold the clevis closed by adding a spring or a small piece of plastic or heat-shrink tubing as pictured at the right.

19. If Mylar covering material hides a CA hinge’s slot, find and open the slot by carefully pressing with a fingernail or sharp hobby knife.

20. To obtain good wood-to-wood gluing surfaces, use the tip of a hot soldering iron to burn through and remove any Mylar covering material. (Be careful to not cut into the wood.)

21. We recommend 30-minute epoxy for permanent attachment of critical parts.

22. Periodically check any preinstalled magnets to ensure they remain securely postitioned.

23. If you are not an experienced ARF assembler or R/C pilot, we strongly urge you to get assistance from an experienced R/C assembler and pilot.

24. Apply threadlock compound or CA adhesive to secure all hardware from vibration.

25. Use epoxy to permanently attach and reinforce critical airframe assemblies. If you have concern about the security of any factory fabrication procedure(s), you may apply extra epoxy adhesive around the perimeter of such part(s) as a safety precaution.

26. Production details (such as included hardware items and/or Mylar or paint colors) may vary.

27. This model may include some plastic, fiberglass and/or carbon-fiber-reinforced parts. If you drill, grind or sand any such part, always wear safety goggles, a particle mask and rubber gloves to guard yourself from eye, skin and respiratory-tract irritation. Never blow into such a part as the dust may blow back into your face.

28. Periodically check the Mylar covering material’s joints and surfaces; if necessary, carefully use an iron (do NOT set the iron’s temperature too high) to secure the edges and to tighten any loosened areas. If a flying surface appears warped or twisted:
 a. Carefully use a covering iron to make sure that all of the edges of the covering (and the edges of any trim made from covering material) are sealed where they wrap around the leading and trailing edges and the wingtips.
 b. Determine which way the control surface must be twisted to correct the warp/twist.
c. Hold one end of the surface between your knees and twist the other end a little bit further than needed. This will cause wrinkles in the covering material. While holding the twist in place, use a heat gun or covering iron to re-tighten the covering material.

d. Repeat until you have it straight. (Actually, you want 2-4 mm of washout in both the left and right panels of most wings; take care to make both left- and right-side panels the same.)

29. Read the tips on our Website at http://www.maxfordusa.com/brushlessmotorandcontroller.aspx and all such instructions included with your motor, electric speed control, battery and charger. Failure to carefully consider and follow these instructions may result in permanent damage to your model airplane, its electric power system, their surroundings, and possible bodily harm! If you crash this model airplane, carefully check whether your battery is damaged. Do NOT attempt to use or recharge a damaged battery.

II. PREFLIGHT & AFTER-FLIGHT CHECKS (FOR YOUR SAFETY, EVERY TIME YOU FLY)

1. Double-check the security of the motor-mounting box, motor or glow engine. Ensure that any hatch(es), installed dummy engine and pilot figure(s) and any added nose weight all remain secure.

2. Check that the landing gear remains attached securely and functions smoothly.

3. Make certain all screws, clevises and other connections throughout the air frame are secure.

4. Double-check the control cables, control directions and amount of control throw. **Do not attempt to fly with a frayed or damaged control cable.**

5. As with all radio-controlled model airplanes, this model must pass the radio range ground check recommended by your radio’s manufacturer or you may not fly safely.

6. We suggest you make a habit of setting your transmitter’s throttle control safely to minimum before turning ON your transmitter. Carefully setup and operate your radio-control and power systems according to their manufacturer’s instructions and follow the guidelines and hints offered by the Academy of Model Aeronautics, your local R/C club, and concerned manufacturers wishing to help ensure your safe enjoyment of this hobby.

III. LIMITED WARRANTY, LIABILITY WAIVER & RETURN POLICY

Maxford USA guarantees this kit to be free from defects in material and workmanship at the time of purchase. Our products have been inspected in our factory and are checked again when shipped from our warehouse. However, Maxford USA cannot directly control the materials you may use or your final assembly process. Therefore, Maxford USA cannot in any way guarantee the performance of your finished model airplane. Furthermore, in purchasing this product, you (the buyer or user of this product) exempt, waive, and relieve Maxford USA from all current or future liability for any personal injury, property damage, or wrongful death, and if you (the buyer or user of this product) are involved in any claim or suit, you will not sue Maxford USA or any of its representatives.

If you do not fully accept the above liability and waiver, you may request a return-merchandise authorization number (RMA#) as explained in item 2 on the following page. If you think there is a missing, damaged or unsatisfactory part, please read the following after-sales service and return policy and instructions:

1. Inspect your order upon delivery for any missing, damaged or unsatisfactory part(s). If you believe there is a problem, you must call us at 562-529-3988 (Monday through Friday except holidays, between the hours of 9 AM and 5 PM Pacific time) before you begin assembly and within 10 days from receipt of your purchase. During this telephone conversation, and with your support, we will determine how to resolve your concern.

2. To request a return-merchandise authorization number (RMA#), call 562-529-3988 (Monday through Friday except holidays, between the hours of 9 AM and 5 PM Pacific Time). If we elect to issue you an RMA#, you must clearly mark this RMA# on the outside of the package. (No return or exchange will be authorized after 10 days from the date of your receipt of the product; any package delivered to us without a Maxford USA RMA# is subject to being returned to the sender, as received, with return postage payable upon delivery.) Returned merchandise must be in its original condition as received from Maxford USA, with no assembly or modification, in the product’s original packing materials, complete with any included manuals and/or accessories. Return shipping and insurance charges must be prepaid by you, the buyer.
3. Returned merchandise that is accepted by Maxford USA for credit is subject to a 10% to 20% restocking fee (the final amount will be determined by Maxford USA upon receipt and examination of the returned merchandise).

Return address: Maxford USA
15939 Illinois Avenue, #B-C
Paramount, CA 90723

(Print the RMA# issued by Maxford USA on your package near our address.)

IV. SPECIFICATIONS

(NOTE: All dimensions and weights are approximate.)

- Wingspan .. 64 inches
- Length .. 47 inches
- Wing area .. 653 square inches
- Radio Minimum of 5 channels with 2 metal gear servos, 1 standard servo and 1 micro servo
 (If a glow engine is used, a 2nd micro servo is needed)
- Flying weight .. Around 5 pounds (depending on power and radio systems)
- Minimum power .. 400W brushless motor
- Propeller .. 11x7 to 12x6 or as recommended by your power system's maker

V. SPECIAL FEATURES

- Unique balsa, plywood and composite semi-scale model of this historic pre-World War I aircraft.
- Fully functional wing warping and horizontal-tail warping. Most control cables are pre-rigged.
- Functional pilot's control stick.
- Shock absorbing main gear and spring-loaded articulated tail skid.
- Adjustable-depth motor-mounting box, able to accept a wide range of power system options.
- Separate front and rear cockpit hatches, secured with strong permanent magnets.
- This ARF comes with two cowls: 1 precut to fit the optional dummy engine for an electric power setup, plus a second cowl that has not been precut, suitable for use with a glow-engine.
- An optional glow-engine firewall, replacement parts and optional detail-upgrade items are available.

VI. PARTS LIST

1. Included items

- Prebuilt and precoversed airframe.
- Preassembled control-rigging for wing- and horizontal tail-warping.
- Composite wing-warping kingposts.
- Twin cockpits.
- Adjustable motor mounting box.
- Preassembled functional pilot’s control stick assembly.
- Preassembled landing gear assembly.
- All required hardware.
- Scale stick-on markings.
- Standard main wheels and tail skid.

2. Items you must supply to complete this ARF

- Epoxy and cyanoacrylate (CA) adhesives and threadlock compound.
- Common household shop tools (screwdriver, pliers, etc.).
- Outer rotor motor and electronic speed control (ESC) such as the Maxford USA Uranus 35425 motor (shown at the right) and Uranus 60A ESC with a 3S or 4S approx. 2,200 mAh LiPo battery, or as recommended by your vendor, or a 40-class glow engine, throttle pushrod and fuel tank.
- A five or more channel radio with two high-torque metal gear servos (such as a Hitec HS-645MG) for wing warping/roll control, two 12-inch servo extensions, a standard servo (such as a Hitec HS-311) for tail warping/pitch control and a micro servo (such as a Hitec HS-55 or E-Max ES08A) for the rudder. If a glow engine is used, a 2nd micro servo is needed to operate the throttle.
- An 11- to 12-inch diameter by 6- or 7-inch pitch propeller (depending on your flying style) or as specified for your electric power system.
3. Optional items you may choose to add
 - Scale Mercedes 4-cylinder inline dummy engine.
 (NOTE: The dummy engine may not fit a glow-engine setup.)
 - Vintage-style 3-inch spoked wheels.
 (NOTE: This ARF comes with wooden wheels. Learn about Maxford USA vintage-style spoked wheels at http://www.maxfordusa.com/vintagestyle3spokedwheels.aspx.)
 - Maxford USA scale pilot figures (shown at far right).
 - Servo extension safety clips.
 - Firewall for optional glow-engine setup.

VII. ASSEMBLY INSTRUCTIONS

A. SIMULATED RADIATORS & PILOT’S CONTROL STICK

1. Attach a simulated radiator to each side of the fuselage.
2. Select option 1 or option 2 described below to attach an approx. 26-inch (66 cm) long cable to the holes in the upper end of the pilot’s control stick.
 (NOTE: If necessary, review page 3 for how to use a crimp tube.)

 OPTION 1
 - Simulated radiator attached with 1 cm (3/8-inch) wood screws.

 OPTION 1: Locate the crimp tube behind the edge of the servo tray.

 NOTE:

 WRONG: Crimp tube is too close to the pilot’s control stick.

 3. Align the control stick’s mounting holes with the predrilled holes in the floor of the fuselage. Secure the control stick to the fuselage with 2 mm bolts, nuts and threadlock compound.

 2 mm bolts and nuts.
B. HORIZONTAL STABILIZER, VERTICAL FINS, TAIL POST, RUDDERS & TAIL SKID

1. Test-fit the horizontal stabilizer to the fuselage.
 (IMPORTANT: The top of the horizontal stabilizer is approx. 1/2-inch above its mounting platform.)

2. Check that all of the preinstalled bolts and nuts holding swivels to the horizontal stabilizer are secure.

3. Glue the horizontal stabilizer into its slot. If necessary, secure the long ‘forked’ ends of the horizontal stabilizer to the sides of the fuselage with epoxy.

4. Temporarily remove and set aside the preinstalled bolt and nut to release the pull-pull strings from the bottom rudder.

5. Test-fit the top vertical stabilizer, top hinge plate, top rudder, hinge post, bottom rudder, bottom vertical stabilizer, and preinstalled lower hinge plate to the fuselage as pictured at the right and on the following page.

 (NOTE: Either rudder may be used as the ‘bottom’ rudder.)

PREASSEMBLED HORIZONTAL STABILIZER

NOTE: Do not apply heat to any of the warping surfaces.

Avoid tangles: Leave swivels attached with tape.

Secure all knots with glue.

String must be able to pass freely through the swivels.

Copyright 2015 by Maxford USA
6. Epoxy the rudder’s hinge post inside the top rudder with the top end of the rudder’s hinge post extending approx. 1/4-inch (7 mm) above the top rudder. Allow the epoxy to cure.

7. Use epoxy to glue the top vertical stabilizer into its slot in the fuselage. Before this epoxy cures drive a 1 cm (3/8-inch) wood screw through the predrilled hole in the tail post and into the wood inside the slot in the fuselage.

8. Use epoxy to glue the bottom vertical stabilizer into its slot in the fuselage. Before this epoxy cures drive a 1 cm (3/8-inch) wood screw through the predrilled hole in the tail post and into the wood inside the slot in the fuselage.

9. Guide the hinge post’s long end down into the opening in the horizontal stabilizer and glue the bottom rudder onto the hinge post.

10. Before the epoxy cures, adjust the lower end of the rudder’s hinge post to extend approx. 1/4-inch (7 mm) below the bottom rudder.

11. Glue the upper hinge plate onto the top vertical stabilizer’s tail post. Ensure the hinge post is evenly “captured” by both hinge plates and remove any excess epoxy that might get in the way of the rudders’ smooth movement. Align the rudders to point the same direction and use masking tape to hold the rudders in alignment until the epoxy cures fully.

12. Guide the cable from the upper end of the pilot’s control stick past the tail skid and through the predrilled opening in the tail post.

13. Slide a crimp tube onto the cable. Guide the cable through the swivel at the bottom of the vertical stabilizer, then back through the crimp tube.

14. Secure the cable and swivel with masking tape.

(Note: In the following steps, when you are ready to insert a cable through an opening in a composite structure, remove the cable secured by masking tape that shows the location of the opening and helps to prevent these openings from becoming obstructed.)

Do NOT crimp at this time.

If necessary, adjust the opening in the horizontal stabilizer to ensure the hinge post does not bind.

A conservative modeler may use petroleum jelly to protect the openings in the hinge plates and in the horizontal stabilizer from epoxy.)
15. Install your tail-warping servo in the supplied servo tray.

16. Glue the servo tray into the fuselage as shown at the right.

17. Center the tail-warping servo.

18. Select a long servo arm and install an EZ-Link connector at the arm’s outer hole as shown at the right. (NOTE: A conservative modeler may use an optional metal servo arm with one side removed as the tail-warping servo arm. You may learn about optional metal servo arms at http://www.maxfordusa.com/metalservoarm.aspx.)

19. Attach the elevator pushrod’s pre-formed Z-bend to a control horn at the front side of the pilot’s control stick.

20. As shown above, position the pilot’s control stick approx. 2 3/4-inches (70 mm) behind the rear cockpit’s front former and snug the EZ-Link connector onto the pushrod.

21. Remove the masking tape from the cable at the bottom vertical stabilizer’s tail post. Draw the cable snug and allow the string to slide through the swivels to self-adjust lengths and equalize tension on each segment of string.

22. Secure the cable with the crimp tube and trim off the loose end of cable.

23. Attach an approx. 26-inch (66 cm) long cable to a threaded metal rod with a crimp tube. Twist a clevis halfway onto the rod. Attach the clevis to the horn at the lower end of the pilot’s control stick.

24. Pull the cable through the fuselage with coat-hanger wire as pictured below.
25. As shown at the right, setup the horizontal stabilizer’s top pull-pull cable the same as the bottom pull-pull cable. Secure the cable with a crimp tube and trim off the loose end of cable.

26. Install your rudder servo in the provided servo tray as shown below.

27. Attach two(2) approx. 22-inch (56 cm) long cables to the outer openings of the longest arm provided with your servo that will fit inside the fuselage as pictured at the right.

28. Center the rudder servo and position it toward the rear of the slotted opening behind the pilot’s control stick. (NOTE: Guide the cable attached to the pilot’s control stick along either side of the rudder servo.)

29. As pictured at the right, reattach the rudder’s control strings to the lower rudder and apply epoxy to lock all four swivels at the same angle.

30. Install the rudder’s pull-pull cables as pictured below.
31. After the rudder's pull-pull cables are installed, slide the rudder servo's tray to adjust the tension on the rudder's pull-pull cables and secure the rudder servo tray with wood screws.

C. WARPABLE WINGS & SIMULATED UNDER-WING TRUSSES

1. Center your metal gear wing-warping servos and install a long servo arm on each servo. (NOTE: We recommend the optional metal arms shown at http://www.maxfordusa.com/metalservoarm.aspx.)

2. Per #12 on page 2, test-fit and mount the servos with the servo arms centered in the hatch cover openings.

3. Connect a 12-inch extension to each wing-warping servo. (NOTE: As mentioned on page 2 in #9, optional Maxford USA servo-extension safety clips are recommended.)

4. Guide the extensions' servo-like connectors from each servo bay out through the root rib of each wing panel as detailed in #13 on page 3.

5. Secure the hatches to the servo bays with wood screws.

6. Check the blind-nut mounting assemblies inside the fuselage. Add more glue if necessary.

7. Test-fit a kingpost into each wing panel. **IMPORTANT:** Align the bushed openings with the cable that will connect the wing-warping servos to the preattached cables at the wing tips.

8. Glue the kingposts into their wing panels. (NOTE: Be careful that no glue accidentally blocks the bushed openings in each kingpost.)

9. As done on the horizontal stabilizer, secure the knots at the ends of the wing-warping cables on both sides of the wing panels with glue.

10. Center the wing rod in the fuselage and slide the wing panels onto the wing rod. Guide the wing-warping servo leads into the fuselage and slide the mounting tabs into their slots.

11. Use the supplied machine screws to attach the wing panels to the fuselage. Snug the machine screws into the preinstalled blind nuts.

 NOTE: 1) After the pull-pull cables are installed, reposition the clevises on the threaded rods attached to the servo arms if necessary to adjust the cable tension. 2) Apply a light lubricating oil or grease where each cable passes through its plastic grommet. 3) Check all control cables and plastic grommets before and after every flight.
12. Use crimp tubes to link 4 preassembled wing warping cable assemblies to their servos as pictured below.

Use clevises to adjust cable tension.

13. As shown below, glue the truss supports into the predrilled holes on the bottom of the wing panels.

14. Glue the trusses onto the truss supports.

Note: DO NOT GLUE either truss to the fuselage if you want to remove the wings for transport.

If necessary, run a 2 mm drill bit through the predrilled holes.

NOTE: The truss is approx. 4 1/4-inches (10.8 cm) behind the leading edge of the wing. Set the CG at approx. 3 1/4- to 4 1/4-inches (8.3 to 10.8 cm) behind the wing’s leading edge.
D. ARTICULATED MAIN LANDING GEAR

1. Use 1 cm (3/8-inch) wood screws and plastic straps to secure the landing gear’s rear strut into its slot in the fuselage.

2. Test-fit and use 1 cm (3/8-inch) wood screws to secure the landing gear’s front mounting plates to the bottoms of the wing panels. (NOTE: Check the landing gear’s nuts, bolts and set screws. Do not ‘tighten’ the self-locking nuts: Allow the wheels to rotate freely and the suspension to ‘travel.’ Add light machine oil to the strut’s springs if desired.)

E. ELECTRIC-POWER SYSTEM & COWL

1. Center your motor on the “X” at the front of the motor mounting box. Use the hardware provided with your motor to attach your motor to the mounting box. (NOTE: Use threadlock compound if you use machine screws to mount the motor.)

2. Connect the motor’s 3 wires to the 3 wires on your electronic speed control (ESC) and connect the ESC’s servo-like lead to the throttle channel on your receiver.

3. With no propeller on the motor, run your motor slowly and only for the few seconds necessary to observe its direction of rotation. If the motor rotates in the wrong direction, swap either two of the three ESC-to-motor wires.

4. Slide the motor mounting box into the fuselage and test-fit the cowl over your motor. Position the rear edge of the cowl to cover the top edge of the round-topped former. (NOTE: If a glow engine is used, use the cowl without the precut opening for a dummy engine.)

5. Mount a propeller to your motor. Slide the motor-mounting box as necessary to position the propeller’s backplate approx. 1/4- to 3/8-inch in front of the cowl.

6. Use wood screws (as shown at the right) or glue to secure the motor-mounting box into its opening in the fuselage. (NOTE: If you use wood screws, harden the wood with CA adhesive.)

7. Glue a wood block at each side of the nose.

8. Drive wood screws through the cowl and into the wood blocks to secure the cowl to the nose.
F. RADIO-CONTROL SYSTEM
Connect and position your receiver at the rear of the battery compartment. Use the 5-volt power supply built into the ESC to power the receiver and servos. (NOTE: A conservative modeler may use a receiver battery or a switching UBEC to power the receiver and servos.)

G. STICK-ON MARKINGS & WING WIRES
1. Peel and stick the Iron Cross markings to the tops of the wing panels and to both sides of the twin rudders as pictured below.

2. Locate the 3 pieces of the top-side wing wire attachment structure pictured at the right.

3. Assemble and test-fit the structure to the openings in the fuselage between the cockpits as shown below.

4. Use glue to permanently mount the structure between the cockpits.

5. Attach the preinstalled simulated top-side wing wires to the predrilled hole at the top of the structure as pictured at the left.

Top-side wing wires and swivels attached with 2 springs, 2 swivels 1 bolt and 1 nut.
6. Use springs to attach the pre-installed simulated under-side wing wires to the landing gear’s cotter pins as pictured at the right.

7. Draw the remaining simulated under-side wing wires toward the lower end of the pilot’s control stick and allow the string to slide through the swivels to equalize the tension on the strings.

8. Using a bolt, nut, 2 swivels and 2 springs, attach the preinstalled simulated under-side wing wires to the lower end of the pilot’s control stick as pictured at the right.

(NOTE: Any twisted pair of simulated horizontal stabilizer or wing tip-warping cables may be separated as shown below.)

9. Install the wing tip wires as shown.
 (NOTE: These wires are optional, only for appearance.)

H. COCKPIT HATCHES, OPTIONAL PILOT FIGURE(S) and OPTIONAL DUMMY ENGINE

1. If you will install optional pilot figures:
 a. Test-fit the pilot mounting platforms (shown at the right) onto the cockpit hatches and secure the platforms with glue.
 b. Position and glue 1/8-scale pilot figures onto their platforms.
2. If you will install an optional scale Mercedes dummy engine:
a. Test-fit the dummy engine into the opening at the top of the cowl with the engine's exhaust pipes at the right as viewed from the pilot's seat.
b. Attach the engine to the top of the motor mounting box with two 1 cm (3/8-inch) wood screws. (NOTE: Using an optional dummy engine with a glow engine is not recommended.)

Congratulations! Assembly is finished!

VIII. SETUP & ADJUSTMENTS
Even though this ARF may be capable of more aerobatic performance, we recommend that it looks best when flown in a scale-like manner, like the original Rumpler Taube, with flat, gentle turns.

1. Center of gravity (CG):
For your initial flight we recommend your Rumpler Taube should balance between approx. 3 1/4- and 4 1/4-inches (8.3 to 10.8 cm) behind the leading edge of the wing as pictured at the right. (NOTE: Extra nose weight will be needed if using a 3S Lipo battery.)

2. Initial deflections:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Recommended Initial Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH</td>
<td>+3/4-inch (+2 cm) from neutral at the trailing edge of the horizontal stabilizer.</td>
</tr>
<tr>
<td>YAW</td>
<td>2 3/4-inch (7 cm) left and right from center at the trailing edge of either rudder.</td>
</tr>
<tr>
<td>ROLL</td>
<td>+1-inch (+2.5 cm) from neutral at the trailing edge of each wing tip.</td>
</tr>
</tbody>
</table>

NOTE: 1) If you employ a wing-warping to rudder mix, we recommend starting with a max. of approx. 25%. 2) Internal structures and/or control linkages may become worn or damaged by attempting to excessively bend the horizontal stabilizer or the wing tips.

3. An airplane this size may not need to have its wing removed for transportation or storage. To remove the wing:

a. Disconnect the springs that connect the wing-wires to the center brace, the lower end of the pilot’s stick and the landing gear’s cotter pins. Remove the screws that secure the wings to the fuselage and attach the landing gear to the wing. Disconnect the wing’s servo extensions from the receiver. Slide the wing panels away from the fuselage.
b. Reverse the procedure to reattach the wing panels and landing gear.

NOTE: Please check our Website at www.maxfordusa.com for latest updates, additional photos, videos and other helpful information.
Reminder …

- This product is NOT a toy.
- The quality and capabilities of your finished model airplane depend on how you assemble it.
- Your safety depends on how you use and fly it.
- Any testing, flying and use of this model airplane is done entirely at your own risk.

PLEASE ENJOY YOUR HOBBY AND FLY SAFELY!

Manufactured by:
Maxford USA RC Model Mfg, Inc.

Distributed by:
Maxford USA RC Model Distribution, Inc.
15939 Illinois Avenue, #B-C
Paramount, CA 90723

Telephone (voice) (562) 529-3988
Fax ... (562) 562-6988
Toll free (orders only) (866) 706-8288
Website www.maxfordusa.com

Order replacement parts, optional accessories, servos, brushless motors, electronic speed controls, and a wide variety of other high-quality RC hobby items online at www.maxfordusa.com.